
How to…
Write applications using Visual Basic

Last month, we finished the Units application by adding the supporting code required to
manage the combo box we added. This month, I’ll be expanding on the methods,
properties and events that you’ve learnt so far.

Common Features

The various controls in VB have a fair number of properties, methods and events in
common. This commonality is present because it reduces the learning curve and makes
the process of learning new controls easier. We have already used the Caption property
of the CommandButton and Label controls to determine what descriptive text will appear
on them. You might not be surprised to learn that the same property serves exactly the
same purpose in the CheckBox, Frame and OptionButton controls as well. This
familiarity makes Visual Basic relatively easy to use because in many cases, you can
begin using an unfamiliar control without needing to learn an entirely new set of
properties.

The following properties, methods and events are present in most VB controls:

Common Properties

Name
This is perhaps the simplest property in VB ; as you already know, it represents the name
that you use to refer to a control in your program.

BackColor & ForeColor
These two properties refer to the background and foreground colours that Windows will
use to draw the control. The foreground colour is the “main” colour of a control; for
example, changing the ForeColor property of a Label control will change the colour of
its text. The background colour normally refers to the blank area around the control and
its text. For example, changing the BackColor property of a Label control to be red
would cause the region covered by the Label to become red, with the exception of the
label text itself.

Font
This property reflects the font that will be used to draw the control’s text. To change the
font of a control, click its Font property and then click the three dots (…) that appear by
its side. You can then choose an alternative font from the standard Windows font
selection dialog.

Enabled
This property determines whether or not the user can interact with a control. It is useful
for preventing the user from choosing something inappropriate at a particular time. We
used the Enabled property in our Units application to stop the user clicking the “Convert”
button when no “from” units were given. Controls that have their Enabled properties set
to false have a greyed-out appearance to indicate that they are not available.

Visible
As you might have guessed, setting this property to true causes the control to be visible,
setting it to false makes the control invisible.

Caption
You’ve met this one before – it determines the descriptive text that is displayed on
controls that use this property.

Text
This property represents the text in a control that the user can change, for example, the
contents of a TextBox. We used this property to retrieve the user-supplied “from” units
in our Units application. A control that has a Caption property doesn’t have a Text
property, and vice-versa.

Left, Width, Top & Height
These represent the placement of a control inside its container, which in our case, has
always been a Form. However, some controls are containers themselves. For example,
the Frame control is a container, whose sole purpose in life is to act as a holding place for
other controls. The Left and Top properties represent how far a control is from the left-
hand and top edges of its container respectively. The Width and Height properties are
self-explanatory. These properties are usually measured in units known as Twips. A twip
is a display-independent unit of measurement - there are normally fifteen twips to every
dot (pixel) on your screen. That is, moving a control right by fifteen twips will move the
control one pixel to the right. If you don’t like referring to dimensions in terms of twips,
you can change the unit of measurement to something more meaningful like pixels or
centimetres. This is achieved by changing a form’s ScaleMode property, which will be
explained in a future tutorial.

Tag
This property has no meaning to Visual Basic – it is provided for you to use as you see
fit. It provides a convenient place in which to place your own information about a
control.

Common Methods

SetFocus
As explained in previous tutorials, your keypresses are directed to only one control at a
time. The control that receives the keyboard input is said to have the focus. You can tell
which control has the focus by looking at it - if a CommandButton has the focus, a dotted

box is drawn around its caption. If a TextBox has the focus, the caret (the vertical
flashing bar) is displayed within it, and so on. The focus is normally moved between
controls either by tabbing between them using tab and shift-tab, or by clicking on them.
However, you can manually set the focus in a VB program by using the SetFocus method
on the control you want to receive the focus. This is useful if the user enters some
inappropriate value into a textbox for example, since you can direct them back to the
control using SetFocus to allow the user to correct the mistake.

Move
This is a quick way of repositioning or resizing a control without setting its Left, Top,
Width and Height properties individually. To use this, you use

<Control>.Move <Left>, [Top], [Width], [Height]

where <Control> is the control you want to move, <Left> is the new value for its
Left property and the rest are optional arguments which will be assigned to their
respective properties. For example:

txtName.Left = 100
txtName.Top = 150

has the same effect as

txName.Move 100,150

Refresh
This method forces VB to redraw the control to which you apply this method. Under
normal circumstances, VB only redraws controls when it is not busy running some code,
i.e. when it is waiting for the user to move the mouse or click a button, and so on. This
means that if you change the appearance of a control in some way and then run some
code immediately afterwards, you won't see the change in the control's appearance until
the code is finished.

Not refreshing enough?

To see this in action, start a new project and place a CommandButton and a Label on the
default form that VB provides. Don't worry about their names for now. Double-click on
the CommandButton and enter the following code:

Dim intCount As Integer
For intCount = 1 to 1500

Label1 = intCount
Next

Please note that the Caption property of a Label is its default property and therefore, I
used Label1 = intCount rather than Label1.Caption = intCount.

Okay, before you run the program, what do you think will happen when
CommandButton1 is clicked? You'd expect to see Label1 count upwards from 1 to 1500
rather quickly (the exact speed depends on how fast your PC is). Try running the
program and seeing what happens. Didn't work as you expected, did it? VB just paused
for a brief moment and then displayed "1500" on the label control.

Does VB cheat?
Is VB cheating since it already knows what the result will be? Well, no - in fact, VB isn't
redrawing the label control until the For..Next loop finishes because it is busy running the
code in the loop. Once the loop finishes, VB gets some free time whilst it waits for you
to do something, and therefore, it redraws the label control. Since the Caption property at
that time is set to 1500, that's all you see.

We can force VB to refresh (update) the control by placing the line

Label1.Refresh

immediately before the Next statement. This explicitly tells VB that you want the control
to be redrawn right away, rather than waiting until it gets some free time on its hands. If
you add the line and run the program again, you'll see that the label control counts
upwards as expected.

Please note that any new values you assign to properties do make it to their controls
immediately, it's just that the display won't be updated unless VB gets some free time, or
you explicitly ask for a control to be refreshed via the Refresh method.

Common Events

Click
We’ve already encountered the Click event in our Units application. We wrote an event
handler for the Click event on the “Convert” CommandButton to perform the conversion
whenever the user clicked on the button. As you’ll have already guessed, the Click event
occurs whenever the user clicks on a control. More precisely defined, a Click event
occurs on a control when the user presses and then releases a mouse button whilst the
mouse is still over that same control.

DblClick
This event occurs whenever the user double-clicks on a control, i.e. presses and releases
the mouse twice in quick succession whilst it is over a control.

MouseDown
The MouseDown event occurs as soon as the user presses a mouse button whilst the
mouse is over a control. Unlike the Click event, this event runs as soon as the button is
pressed, i.e. it doesn’t wait for the button to be released. VB provides you with additional
information when using the MouseDown event, such as which mouse button was pressed,

whereabouts it was pressed and whether or not Shift, Alt or Control were being held
down at that time.

MouseUp
This is similar to the MouseDown event, except that it occurs when the mouse is released
instead. A control that receives a MouseDown event will also receive the corresponding
MouseUp event, even if the mouse isn’t over the control that received the initial
MouseDown event in the first place. For example, if you press a mouse button whilst
over a Label control and then keeping the button held down, move the mouse over a
TextBox control and then release the mouse button, the TextBox control will not receive a
MouseUp event. The Label control receives it instead since it also received the initial
MouseDown event.

In Closing

Well, that’s all for now. As usual, if you want to know what so-and-so does, then try it!
That’s the beauty of VB; many things are self-explanatory. For example, I haven’t
explained what causes the MouseMove event to occur yet, but I would think you’ve
already guessed correctly. Until next time,

Cheers,
Nick.

Nicholas Scott is a freelance columnist who currently works for MIS Computer Services
in Northwich. Nick can be contacted via email at nicks@miscs.com.

(ED: The filename for this image is Colours.bmp)

The effects of changing the ForeColor and BackColor properties.

ForeColor and
BackColor left
at their defaults

ForeColor set to blue BackColor set to green

(ED: The filename for this image is Sizes.bmp)

Left

Top

Width

Height

The Left, Top, Width and Height properties, and the
dimensions that they represent. Notice that Command1
has got the focus in this case, hence the dotted rectangle
that surrounds its caption.

	Common Features
	Common Properties
	Name
	BackColor & ForeColor
	Font
	Visible
	Caption
	Text
	Left, Width, Top & Height
	Tag

	Common Events
	Click
	DblClick

	In Closing

